GE Research Awarded NASA Grant to Develop High Temperature Solutions to Enhance Missions to Venus
GE researchers are aiming for Venus with breakthrough electronics and sensors on Earth, which could serve both planets in the future.
Caption: Surface temperatures on Venus are around 475 degrees Celsius, or 900 degrees Fahrenheit. That's as hot as a wood-fired pizza oven. GE and NASA researchers are developing a UV imager that can handle these extreme conditions to reliably explore and gather data about the planet's surface.
- GE researchers applying novel silicon carbide (SiC) photodiode technology to develop and demonstrate a UV imager that reliably operates in hot and harsh environments of 500 degrees Celsius (932 degrees Fahrenheit) to study the composition and structure of Venus’ surface and atmosphere
- Venus is the hottest planet in the Solar System, with extreme atmospheric pressures and surface temperatures of 475 degrees Celsius, or 900 degrees Fahrenheit, similar to a wood-fired pizza oven
- High temperature, ruggedized electronics are essential for enabling long-term robotic exploration in extreme environments like on Venus
- Improvements in electronics temperature capability could bolster a host of defense and other industrial inspection and sensing applications on Earth that operate in extreme environments
The Electronics and Sensing Team at GE Research has been awarded a three-year, $1.7 million grant by NASA through their High Operating Temperature Technology (HOTTech) program to develop and demonstrate a self-illuminating UV imager that can withstand Venus’ extreme temperature and pressure environment to study the composition and structure of the planet’s surface and atmosphere. Click here to see an infographic of out of this world innovations GE and NASA have worked on to advance space exploration and advances here on Earth.
The agency’s HOTTech program supports the development of high temperature electrical, electronics and electric power systems that significantly enhance space exploration and discoveries to high-temperature, harsh environments like on Venus.
The GE Research team will collaborate with researchers at NASA’s Glenn Research Center in Cleveland to develop and demonstrate the UV imager. GE researchers will develop the imager array, which gathers information about the material and mineral composition of the planet’s surface. NASA researchers will build the imager readout integrated circuit electronics, which processes information for transmission back to Earth. The imager readout electronics are based on NASA-developed advances in high temperature electronics that operate for extended periods in Venus surface conditions. This work will also include testing in simulated Venus surface conditions at Glenn’s Extreme Environment Rig.
“This new UV imager will not only further the frontiers of space exploration, we believe it will push a new frontier of breakthrough electronics here on Earth that can function in the most extreme operating environments,” said Jim LeBlanc, Technology Director for Electrical Systems at GE Research. “Technology designed to survive and operate in planetary environments can also advance the state-of-the-art in our own world. That’s what this project is helping to do.”
LeBlanc added, “We have seen how semiconductors and next generation electronics have transformed our world in areas such as telecommunications, big data computing, and automotive. But we have only scratched the surface of what’s possible. When we have electronics that reliably function in hotter and harsher environments, we create new opportunities to improve major infrastructure like the power grid, to advance breakthroughs in sea, air, and space propulsion, and to enable new challenging applications in the defense sector.”
LeBlanc cited possible applications in the defense space including unmanned vehicles, and hypersonic platforms. In the aviation and power sectors, more ruggedized electronics could enable sensors to be embedded in engines or power turbines in areas previously not possible. This could allow those systems to have access to critical data that can provide insights to optimize for performance and reliability.
“As a leading developer and manufacturer of technology for jet engines and power generation turbines, we feel like operating on Venus falls right in our core area of focus,” said LeBlanc said. “In fact, we’re already working today on developing new metals, ceramics and electronic systems that can withstand hot and harsh conditions nearly twice what would be experienced on Venus.”
The GE Research team plans to utilize its leading SiC packaging technology and 20-year photodiode production background to develop, fabricate and demonstrate a high temperature sensor for the UV imager that operates reliably at temperatures hotter than Venus’ surface and atmosphere at 500 degrees Celsius. GE has decades of experience in extreme environment electronics from SiC MOSFETs to high temperature packaging and materials development. NASA Glenn also has decades of leading development of high temperature electronics and sensors. This combined experience along with GE Research’s 60 years of experience developing, demonstrating, and deploying electronics and sensing solutions presents a greater opportunity to solve the toughest challenges in NASA’s HoTTech program.
www.ge.com